The survival probability for critical spread-out oriented percolation above 4 + 1 dimensions. I. Induction

نویسندگان

  • Remco van der Hofstad
  • Frank den Hollander
  • Gordon Slade
چکیده

We consider critical spread-out oriented percolation above 4+1 dimensions. Our main result is that the extinction probability at time n (i.e., the probability for the origin to be connected to the hyperplane at time n but not to the hyperplane at time n + 1) decays like 1/Bn2 as n →∞, where B is a finite positive constant. This in turn implies that the survival probability at time n (i.e., the probability that the origin is connected to the hyperplane at time n) decays like 1/Bn as n →∞. The latter has been shown in an earlier paper to have consequences for the geometry of large critical clusters and for the incipient infinite cluster. The present paper is Part I in a series of two papers. In Part II, we derive a lace expansion for the survival probability, adapted so as to deal with point-to-plane connections. This lace expansion leads to a nonlinear recursion relation for the survival probability. In Part I, we use this recursion relation to deduce the asymptotics via induction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of the incipient infinite cluster for spread-out oriented percolation above 4 + 1 dimensions

We construct the incipient infinite cluster measure (IIC) for sufficiently spread-out oriented percolation on Zd × Z+, for d + 1 > 4 + 1. We consider two different constructions. For the first construction, we define Pn(E) by taking the probability of the intersection of an event E with the event that the origin is connected to (x, n) ∈ Z×Z+, summing this probability over x ∈ Zd, and normalisin...

متن کامل

The survival probability for critical spread - out oriented percolation above 4 + 1 dimensions . II . Expansion

We derive a lace expansion for the survival probability for critical spread-out oriented percolation above 4+1 dimensions, i.e., the probability θn that the origin is connected to the hyperplane at time n, at the critical threshold pc. Our lace expansion leads to a nonlinear recursion relation for θn, with coefficients that we bound via diagrammatic estimates. This lace expansion is for point-t...

متن کامل

Critical points for spread - out self - avoiding walk , percolation and the contact process above the upper critical dimensions Remco

We consider self-avoiding walk and percolation in Zd, oriented percolation in Z×Z+, and the contact process in Zd, with pD( · ) being the coupling function whose range is denoted by L < ∞. For percolation, for example, each bond {x, y} is occupied with probability pD(y−x). The above models are known to exhibit a phase transition when the parameter p varies around a model-dependent critical poin...

متن کامل

Critical Two-point Functions and the Lace Expansion for Spread-out High-dimensional Percolation and Related Models by Takashi Hara,1 Remco

We consider spread-out models of self-avoiding walk, bond percolation, lattice trees and bond lattice animals on Zd , having long finite-range connections, above their upper critical dimensions d = 4 (self-avoiding walk), d = 6 (percolation) and d = 8 (trees and animals). The two-point functions for these models are respectively the generating function for selfavoiding walks from the origin to ...

متن کامل

Critical points for spread - out self - avoiding walk , percolation and the contact process above the upper critical dimensions

We consider self-avoiding walk and percolation in Zd, oriented percolation in Z×Z+, and the contact process in Zd, with p D( · ) being the coupling function whose range is denoted by L < ∞. For percolation, for example, each bond {x, y} is occupied with probability p D(y−x). The above models are known to exhibit a phase transition when the parameter p varies around a model-dependent critical po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006